Circular Flow in Mono-directed Eulerian Signed Graphs

Zhouningxin Wang

wang zhou 487@gmail.com

(Joint work with Jiaao Li, Reza Naserasr, and Xuding Zhu)

28th Oct. 2022

- Introduction
 - Start from Jaeger's flow conjecture
 - Circular coloring of signed graphs
 - Circular flow in mono-directed signed graphs
 - Bipartite analog of Jaeger-Zhang conjecture
- Circular flow in mono-directed Eulerian signed graphs
 - Preliminaries
 - Flows in Eulerian signed graphs
 - Coloring of signed bipartite planar graphs
- 3 Conclusion
 - Results
 - Questions

Jaeger's circular flow conjecture

Tutte's 3-flow conjecture

Every 4-edge-connected graph admits a nowhere-zero 3-flow.

Jaeger's circular flow problem

Every 4k-edge-connected graph admits a circular $\frac{2k+1}{k}$ -flow.

- It has been disproved for $k \ge 3$ [M. Han, J. Li, Y. Wu, and C.Q. Zhang 2018];
- It has been verified for 6k-edge-connected graphs [L. M. Lovász, C. Thomassen, Y. Wu, and C.Q. Zhang 2013].

Duality: circular flow and circular coloring

Let p and q be two positive integers satisfying $p \ge 2q$.

A circular $\frac{p}{q}$ -flow in a graph G is a pair (D,f) where D is an orientation on G and $f: E(G) \to \mathbb{Z}$ satisfying that $q \le |f(e)| \le p-q$ and for each vertex v, $\sum\limits_{(v,w)\in D} f(vw) - \sum\limits_{(u,v)\in D} f(uv) = 0$.

A circular $\frac{p}{q}$ -coloring of a graph G is a mapping $\varphi: V(G) \to \{1, 2, \dots, p\}$ such that $q \leq |f(u) - f(v)| \leq p - q$ for each edge $uv \in E(G)$.

Lemma [L. A. Goddyn, M. Tarsi, and C.Q. Zhang 1998]

A plane graph G admits a circular $\frac{p}{q}$ -coloring if and only if its dual graph G^* admits a circular $\frac{p}{q}$ -flow.

Jaeger-Zhang Conjecture

Jaeger-Zhang Conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth at least 4k+1 admits a circular $\frac{2k+1}{k}$ -coloring.

- k = 1: Grötzsch's theorem;
- k = 2: verified for odd-girth 11 [Z. Dvořák and L. Postle 2017; D. Cranston and J. Li 2020];
- k = 3: verified for odd-girth 17 [D. Cranston and J. Li 2020; L. Postle and E. Smith-Roberge 2022];
- $k \ge 4$:
 - verified for odd-girth 8k 3 [X. Zhu 2001];
 - verified for odd-girth $\frac{20k-2}{3}$ [O.V. Borodin, S.-J. Kim, A.V. Kostochka and D.B. West 2002];
 - verified for odd-girth 6k + 1 [L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013].

Signed graphs

- A signed graph (G, σ) is a graph G together with an assignment $\sigma : E(G) \to \{+, -\}$.
- The sign of a closed walk (especially, a cycle) is the product of signs of all the edges in it.
- A switching at vertex *v* is to switch the signs of all the edges incident to this vertex.

Theorem [T. Zaslavsky 1982]

Signed graphs (G, σ) and (G, σ') are switching equivalent if and only if they have the same set of negative cycles.

 The negative-girth of a signed graph is the length of a shortest negative cycle.

Homomorphism of signed graphs

- A homomorphism of (G, σ) to (H, π) is a mapping φ from V(G) and E(G) to V(H) and E(H) respectively, such that the adjacency, the incidence and the signs of closed walks are preserved. If there exists one, we write $(G, \sigma) \to (H, \pi)$.
- A homomorphism of (G, σ) to (H, π) is said to be edge-sign preserving if furthermore, it preserves the signs of the edges. If there exists one, we write $(G, \sigma) \xrightarrow{s.p.} (H, \pi)$.
- $(G, \sigma) \to (H, \pi) \Leftrightarrow \exists \sigma' \equiv \sigma, (G, \sigma') \xrightarrow{s.p.} (H, \pi).$

Circular coloring of signed graphs

Let C^r be a circle of circumference r.

Definition [R. Naserasr, Z. Wang and X. Zhu 2021]

Given a signed graph (G, σ) with no positive loop and a real number r, a circular r-coloring of (G, σ) is a mapping $\varphi: V(G) \to C^r$ such that for each positive edge uv of (G, σ) ,

$$d_{C^r}(\varphi(u),\varphi(v))\geq 1,$$

and for each negative edge uv of (G, σ) ,

$$d_{C^r}(\varphi(u),\overline{\varphi(v)}) \geq 1.$$

The circular chromatic number of (G, σ) is defined as

$$\chi_c(G, \sigma) = \inf\{r \ge 1 : (G, \sigma) \text{ admits a circular } r\text{-coloring}\}.$$

Circular $\frac{p}{a}$ -coloring of signed graphs

Given a positive even integer p and a positive integer q satisfying $q \leq \frac{p}{2}$, a circular $\frac{p}{q}$ -coloring of a signed graph (G, σ) is a mapping $\varphi: V(G) \to \{0, 1, \dots, p-1\}$ such that for any positive edge uv,

$$q \leq |\varphi(u) - \varphi(v)| \leq p - q,$$

and for any negative edge uv,

$$|\varphi(u)-\varphi(v)|\leq \frac{p}{2}-q \ \ \text{or} \ \ |\varphi(u)-\varphi(v)|\geq \frac{p}{2}+q.$$

Signed circular cliques

A signed graph (G, σ) admits a circular $\frac{p}{q}$ -coloring if and only if it admits an edge-sign preserving homomorphism to the signed circular clique $K_{p,q}^s$.

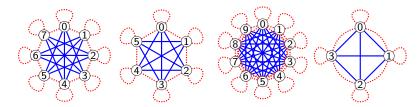


Figure: $K_{8;3}^s \prec K_{6;2}^s \prec K_{10;3}^s \prec K_{4;1}^s$

Orientation on signed graphs

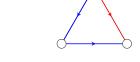


Figure: A bi-directed signed K_3 Figure: A mono-directed signed K_3

Circular $\frac{p}{q}$ -flow in mono-directed signed graphs

Definition [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Given a positive even integer p and a positive integer q where $q \leq \frac{p}{2}$, a circular $\frac{p}{q}$ -flow in (G,σ) is a pair (D,f) where D is an orientation on G and $f:E(G)\to \mathbb{Z}$ satisfies the following conditions.

- For each positive edge e, $|f(e)| \in \{q, ..., p-q\}$.
- $\bullet \ \ \text{For each negative edge } e, \ |f(e)| \in \{0,...,\tfrac{p}{2}-q\} \cup \{\tfrac{p}{2}+q,...,p-1\}.$
- For each vertex v of (G, σ) , $\sum_{(v,w)\in D} f(vw) = \sum_{(u,v)\in D} f(uv)$.

The circular flow index of (G, σ) is defined to be

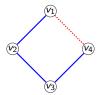
$$\Phi_c(G, \sigma) = \min\{\frac{p}{q} \mid (G, \sigma) \text{ admits a circular } \frac{p}{q} \text{-flow}\}.$$

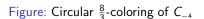
Duality: circular coloring and circular flow

Lemma [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Let (G, σ) be a signed plane graph and (G^*, σ^*) be its dual signed graph. Then

$$\chi_c(G,\sigma) = \Phi_c(G^*,\sigma^*).$$





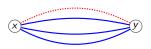


Figure: Circular $\frac{8}{3}$ -flow in C_{-4}^*

Circular $\frac{2\ell}{\ell-1}$ -flow and circular $\frac{2\ell}{\ell-1}$ -coloring

Figure: C_{-2}

Figure: C_3

Figure: C_{-4}

Figure: C_5

Let k be a positive integer.

- $\chi_c(G,+) \leq \frac{2k+1}{k} \Leftrightarrow (G,+) \to C_{2k+1}$.
- For bipartite G, $\chi_c(G, \sigma) \leq \frac{4k}{2k-1} \Leftrightarrow (G, \sigma) \to C_{-2k}$. [R. Naserasr and Z. Wang 2021]

Signed bipartite analog of Jaeger-Zhang conjecture

Signed Eulerian analog of Jaeger's circular flow conjecture

Every g(k)-edge-connected Eulerian signed graph admits a circular $\frac{4k}{2k-1}$ -flow.

Signed bipartite analog of Jaeger-Zhang conjecture

Every signed bipartite planar graph of negative-girth at least f(k) admits a homomorphism to C_{-2k} .

Signed bipartite analog of Jaeger-Zhang conjecture

Signed bipartite analog of Jaeger-Zhang conjecture

Every signed bipartite planar graph of negative-girth at least f(k) admits a homomorphism to C_{-2k} .

- It was conjectured that f(k) = 4k 2 [R. Naserasr, E. Rollová, and É. Sopena 2015];
- k = 2: verified for negative-girth 8 (best possible) [R. Naserasr, L-A. Pham, and Z. Wang 2022];
- k = 3,4: verified for negative-girth 14 and 20 [J. Li, Y. Shi, Z. Wang, and C. Wei 2022+];
- $k \ge 5$:
 - verified for negative-girth 8k 2 [C. Charpentier, R. Naserasr, and E. Sopena 2020];
 - verified for negative-girth 6k 2 [J. Li, R. Naserasr, Z. Wang, and X. Zhu 2022+].

Bipartite analog of Jaeger-Zhang conjecture

Main results

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Every (6k-2)-edge-connected Eulerian signed graph admits a circular $\frac{4k}{2k-1}$ -flow.

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Every signed bipartite planar graph of negative-girth at least 6k-2 admits a homomorphism to C_{-2k} .

- Introduction
 - Start from Jaeger's flow conjecture
 - Circular coloring of signed graphs
 - Circular flow in mono-directed signed graphs
 - Bipartite analog of Jaeger-Zhang conjecture
- Circular flow in mono-directed Eulerian signed graphs
 - Preliminaries
 - Flows in Eulerian signed graphs
 - Coloring of signed bipartite planar graphs
- 3 Conclusion
 - Results
 - Questions

(\mathbb{Z}_{2k},β) -orientation on graphs

Definition [J. Li, Y. Wu and C.Q. Zhang 2020]

Given a graph G, a function $\beta: V(G) \to \{0, \pm 1, \dots, \pm k\}$ is a parity-compliant 2k-boundary of G if for every vertex $v \in V(G)$,

$$\beta(v) \equiv d(v) \pmod{2}$$
 and $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{2k}$.

Given a parity-compliant 2k-boundary β , an orientation D on G is called a (\mathbb{Z}_{2k}, β) -orientation if for every vertex $v \in V(G)$,

$$\stackrel{\longleftarrow}{d_D}(v) - \stackrel{\longrightarrow}{d_D}(v) \equiv \beta(v) \pmod{2k}.$$

(\mathbb{Z}_{2k},β) -orientation on graphs

Theorem [L.M. Lovasz, C. Thomassen, Y. Wu and C.Q. Zhang 2013; J. Li, Y. Wu and C.Q. Zhang 2020]

Let G be a graph with a parity-compliant 2k-boundary β for $k \geq 3$. Let z_0 be a vertex of V(G) such that $d(z_0) \leq 2k - 2 + |\beta(z_0)|$. Assume that D_{z_0} is an orientation on $E(z_0)$ which achieves the boundary $\beta(z_0)$. Let $V_0 = \{v \in V(G) \setminus \{z_0\} \mid \beta(v) = 0\}$. If $V_0 \neq \emptyset$, we let v_0 be a vertex of V_0 with the smallest degree. Assume that $d(A) \geq 2k - 2 + |\beta(A)|$ for any $A \subset V(G) \setminus \{z_0\}$ with $A \neq \{v_0\}$ and $|V(G) \setminus A| > 1$. Then the partial orientation D_{z_0} can be extended to a (\mathbb{Z}_{2k},β) -orientation on the entire graph G.

Theorem [J. Li, Y. Wu and C.Q. Zhang 2020]

Let G be a (3k-3)-edge-connected graph, where k > 3. For any parity-compliant 2k-boundary β of G, G admits a (\mathbb{Z}_{2k}, β) -orientation. Flows in Eulerian signed graphs

Circular $\frac{4k}{2k-1}$ -flow in Eulerian signed graphs

Tutte's lemma [W.T. Tutte 1954]

If a graph admits a modulo k-flow (D, f), then it admits an integer k-flow (D, f') such that $f'(e) \equiv f(e) \pmod{k}$ for every edge e.

Lemma [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Given an Eulerian signed graph (G, σ) , the following claims are equivalent:

- (G, σ) admits a circular $\frac{4k}{2k-1}$ -flow;
- (G, σ) admits a modulo 4k-flow (D, f) such that for each positive edge e, $f(e) \in \{2k-1, 2k+1\}$, and for each negative edge e, $f(e) \in \{-1, 1\}$;
- (G, σ) admits a (\mathbb{Z}_{4k}, β) -orientation with $\beta(v) \equiv 2k \cdot d^+(v)$ (mod 4k) for each vertex $v \in V(G)$.

Sketch of the proof

- Assume that D is a (\mathbb{Z}_{4k}, β) -orientation on G with $\beta(v) \equiv 2k \cdot d^+(v)$ (mod 4k). Let D' be an arbitrary orientation on G.
- Define $f_1: E(G) \to \mathbb{Z}_{4k}$ such that $f_1(e)=1$ if e is oriented in D the same as in D' and $f_1(e)=-1$ otherwise. We claim that such a pair (D',f_1) is a modulo 4k-flow in G satisfying that $\partial_{D'}f_1(v)\equiv\beta(v)$ (mod 4k) for each $v\in V(G)$.
- Define $g: E(G) \to \mathbb{Z}_{4k}$ such that g(e) = 2k if e is a positive edge and g(e) = 0 if e is a negative edge. Thus $\partial_{D'}g(v) \equiv 2k \cdot d^+(v) \pmod{4k}$ for each $v \in V(G)$.
- Let $f = f_1 + g$. Then $f : E(\hat{G}) \to \mathbb{Z}_{4k}$ satisfies the following conditions:
 - (1) For each positive edge e, $f(e) = f_1(e) + 2k \in \{2k 1, 2k + 1\}$.
 - (2) For each negative edge e, $f(e) = f_1(e) \in \{-1, 1\}$.
 - (3) $\partial_{D'} f(v) = \partial_{D'} f_1(v) + \partial_{D'} g(v) = \beta(v) + 2k \cdot d^+(v) \equiv 0 \pmod{4k}$. Such (D', f) is a required modulo 4k-flow in (G, σ) .

Flows in Eulerian signed graphs

Circular $\frac{4k}{2k-1}$ -flow in Eulerian signed graphs

Theorem [J. Li, Y. Wu and C.Q. Zhang 2020]

Let G be a (3k-3)-edge-connected graph, where $k \geq 3$. For any parity-compliant 2k-boundary β of G, G admits a (\mathbb{Z}_{2k}, β) -orientation.

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

For any Eulerian signed graph (G, σ) , if the underlying graph G is (6k-2)-edge-connected, then $\Phi_c(G, \sigma) \leq \frac{4k}{2k-1}$.

Corollary

Every signed bipartite planar graph of girth at least 6k-2 admits a circular $\frac{4k}{2k-1}$ -coloring, i.e., it admits a homomorphism to C_{-2k} .

Coloring of signed bipartite planar graphs

Bipartite folding lemma

Bipartite folding lemma [R. Naserasr, E. Rollova and E. Sopena 2013]

Let (G, σ) be a signed bipartite plane graph whose shortest negative cycle is of length 2k. Assume that C is a facial cycle that is not a negative 2k-cycle. Then there are vertices v_{i-1}, v_i , and v_{i+1} consecutive in the cyclic order of the boundary of C, such that identifying v_{i-1} and v_{i+1} , after a possible switching at one of the two vertices, the resulting signed graph remains a signed bipartite plane graph whose shortest negative cycle is still of length 2k.

Extending partial pre-orientation

Lemma [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Given a positive integer k, a graph G and a vertex z of it, assume that the cut $(\{z\}, V(G) \setminus \{z\})$ is of size at most 6k-2, but every other cut (X, X^c) is of size at least 6k-2. Then given any parity-compliant 4k-boundary β of G and any orientation D_z of the edges incident to z satisfying that $\overrightarrow{d_{D_z}}(z) - \overrightarrow{d_{D_z}}(z) \equiv \beta(z)$ (mod 4k), D_z can be extended to a (\mathbb{Z}_{4k}, β) -orientation on G.

Given a parity-compliant 4k-boundary β , let D_z be the pre-orientation on the edges incident to z achieving $\beta(z)$. Let D_z' be a pre-orientation obtained from D_z by changing one in-arc, say (w,z), of z to an out-arc and let β' be defined as follows:

$$\beta'(v) = \begin{cases} \beta(v) + 2 & \text{if } v = z, \\ \beta(v) - 2, & \text{if } v = w, \\ \beta(v), & \text{otherwise.} \end{cases}$$

Coloring of signed bipartite planar graphs

Mapping signed bipartite planar graphs to C_{-2k}

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Every signed bipartite planar graph of negative-girth at least 6k - 2 admits a homomorphism to C_{-2k} .

Assume that (G, σ) is a minimum counterexample and (G^*, σ^*) is its dual signed graph.

By the bipartite folding lemma, we may assume that (G, σ) is a signed bipartite plane graph of negative-girth 6k-2 in which each facial cycle is a negative (6k-2)-cycle and (G,σ) admits no circular $\frac{4k}{2k-1}$ -coloring.

Thus (G^*, σ^*) is a (6k-2)-regular signed Eulerian graph and admits no circular $\frac{4k}{2k-1}$ -flow.

Sketch of the proof

- Assume that (X, X^c) is an edge-cut of size smaller than 6k-2 of G^* and |X| is minimized. Let \hat{H} and \hat{H}^c denote the signed subgraphs of \hat{G}^* induced by X and X^c .
- First, \hat{G}^*/\hat{H} admits a circular $\frac{4k}{2k-1}$ -flow by the minimality of (G,σ) . Let D be a (\mathbb{Z}_{4k},β) -orientation on \hat{G}^*/\hat{H} with $\beta(v)\equiv 2k\cdot d^+(v)$ (mod 4k).
- Let G_1 be the graph obtained from \hat{G}^* by identifying all the vertices of X^c and we denote by z_0 the new vertex.
 - Let D_{z_0} denote the orientation of D restricted on $E(z_0)$ and let β be a parity-compliant 4k-boundary of G_1 such that

$$\beta(z_0) = \overleftarrow{d_{D_{z_0}}}(z_0) - \overrightarrow{d_{D_{z_0}}}(z_0).$$

• We conclude that D_{z_0} can be extended to a (\mathbb{Z}_{4k},β) -orientation on G_1 .

So the (\mathbb{Z}_{4k}, β) -orientation of \hat{G}^*/\hat{H} is extended to \hat{H} and thus \hat{G}^* admits a (\mathbb{Z}_{4k}, β) -orientation with $\beta(v) \equiv 2k \cdot d^+(v)$ (mod 4k).

- Introduction
 - Start from Jaeger's flow conjecture
 - Circular coloring of signed graphs
 - Circular flow in mono-directed signed graphs
 - Bipartite analog of Jaeger-Zhang conjecture
- Circular flow in mono-directed Eulerian signed graphs
 - Preliminaries
 - Flows in Eulerian signed graphs
 - Coloring of signed bipartite planar graphs
- Conclusion
 - Results
 - Questions

Results

Recent results

Circular flow index of highly edge-connected signed graphs

Edge-Connectivity	Conjectures	Known bounds
2	$\Phi_c \leq 10 \ [1]$	$\Phi_c \leq 12$
3	*	$\Phi_c \leq 6$
4	*	$\Phi_c \le 4 \text{ (tight)}$
5	$\Phi_c \leq 3$ [2]	*
6		$\Phi_c < 4$
7+planar		$\Phi_c \leq \frac{12}{5} \text{ [LSWW22+]}$ $\Phi_c \leq \frac{16}{7} \text{ [LSWW22+]}$
10+planar		$\Phi_c \leq \frac{16}{7}$ [LSWW22+]
• • •	• • •	
3k - 1	*	$ \Phi_c \le \frac{2k}{k-1} \\ \Phi_c < \frac{2k}{k-1} $
3 <i>k</i>	*	$\Phi_c < \frac{2k}{k-1}$
3k + 1	*	$\Phi_c \le \frac{4k+2}{2k-1}$
• • •	• • •	• • •
6k - 2 + Eulerian	*	$\Phi_c \le \frac{4k}{2k-1}$

Questions

Conjectures

Lemma [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Given a graph G, we have $\Phi_c(T_2(G)) = 2\Phi_c(G)$.

Reformulate Tutte's 5-flow conjecture:

Conjecture [1]

Every 2-edge-connected signed graph admits a circular 10-flow.

Proposition [Z. Pan and X. Zhu 2003]

For any rational number $r \in [2, 10]$, there exists a 2-edge-connected signed graph whose circular flow index is r.

Questions

Conjectures

 Reduction of Tutte's 5-flow conjecture to 3-edge-connected cubic graphs

Quetsion

Does every 3-edge-connected signed graph admit a circular 5-flow?

Stronger Tutte's 3-flow conjecture

Conjecture [2]

Every 5-edge-connected signed graph admits a circular 3-flow.

Tutte's 4-flow conjecture restated

Conjecture

Every 2-edge-connected signed Petersen-minor-free graph admits a circular 8-flow.

Discussion

- Given an integer $k \ge 1$, what is the smallest integer $f_1(k)$ such that every $f_1(k)$ -edge-connected signed graphs admits a circular $\frac{2k+1}{k}$ -flow?
- Given an integer $k \ge 1$, what is the smallest integer $f_2(k)$ such that every $f_2(k)$ -edge-connected signed graphs admits a circular $\frac{4k}{2k-1}$ -flow?

For Eulerian signed graphs:

• Given an integer $k \ge 1$, what is the smallest integer g(k) such that every (negative-)g(k)-edge-connected Eulerian signed graphs admits a circular $\frac{4k}{2k-1}$ -flow?

Questions

Thanks for your attention!